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Abstract

A digital image processing technique is used for measurement of centroid coordinates of fibers with forthcoming

estimation of statistical parameters and functions describing the stochastic structure of a real fiber composite. Com-

parative statistical analysis of the real and numerically simulated structure are performed. Accompanying of known

methods of the generation of random configurations by the random shaking procedure allows creating of the most

homogenized and mixed structures that do not depend on the initial protocol of particle generation. We consider a

linearly elastic composite medium, which consists of a homogeneous matrix containing a statistically homogeneous set

of ellipsoidal inclusions. The multiparticle effective field method (see for references, Buryachenko, Appl. Mech. Rev.,

(2001a), 54, 1–47) based on the theory of functions of random variables and Green�s functions is used for demonstration
of the dependence of effective elastic moduli of fiber composites on the radial distribution functions estimated from the

real experimental data as well as from the ensembles generated by the method proposed.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The quantitative description of the microtopology of heterogeneous media, such as composite materials,

porous and cracked solids, suspensions and amorphous materials, is crucial in the prediction of overall

mechanical and physical properties of these materials. For example, many studies have shown that both

tensile ductility and fracture properties of multy-phase composite materials are strongly affected by the
spatial heterogeneity of the reinforcing phases. After many years of comprehensive study by direct mea-

surements and empirical relations that is extremely laborious, the structure of microinhomogeneous
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materials are not completely understood. Computer simulation of topologically disordered structures by

the random packing of hard spherical particles in 2D and 3D cases has a long history originated in the

theory of liquids. This problem is closely connected with the known fundamental problem of statistical

physics––description of the behavior of the particle system with interaction potential of hard spheres (see
e.g. Binder and Heerman, 1997). Random packing of spheres has been studied very extensively due to their

technological importance, and their opportunity to model the simple liquid, concentrated suspensions,

amorphous and powders materials.

Computer simulation of packing problems can be classified into three groups of methods: molecular

dynamic, Monte Carlo, and dense random packing. Much progress in the theory of the dense random

packing was approached by the use of two kinds of methods: the sequential generation models and the

collective rearrangement models (CRM). In the sequential model by Bennet (1972), so called cluster growth

model, a particle being added to the surface of particle cluster which grows outwards is placed sequentially
to the point closest to the original such that the new particle established contact with three existing spheres

in the cluster. Overlapping is ruled out by checking the center–center distance of the particle. This algorithm

was modified (see Lu et al., 1994) by including an artificial input parameter, ‘‘coefficient of tetrahedron

perfection’’, ktp to require that a triangular site would be filled only if the resulting tetrahedron satisfied a

minimum ktp requirement which ranged from requiring perfect tetrahedra, ktp ¼ 1:0, to placing no re-

quirement on triangular sites except that the added sphere would touch all three of the spheres which made

up the site, ktp ¼ 2:0. Phenomenological character of the construction algorithm posed the particle cluster

from the initial term containing three particles leads to the inhomogeneous and anisotropic inclusions fields
with the different density that was demonstrated by Boudreaux and Gregor (1977). Moreover, the con-

figurations generated do not demonstrate the characteristic split second peak in the radial distribution

function (RDF) observed in experimental packing. Kansal et al. (2000) proposed algorithm controlling the

degree of order throughout the formation of the packing of growing clusters. In the second type of se-

quential generation model, called the model of ‘‘rigid sphere free fall into a virtual box’’, one particle is

dropped vertically each time from the random point onto the surface of an existing particle cluster growing

upwards (see e.g. Nolan and Kavanagh, 1992; Cesarano et al., 1995; Kondrachuk et al., 1997; Furukawa

et al., 2000). The different densities were approached by introducing a phenomenological parameter limiting
the number of rotations of each fallen sphere until it becomes a permanent part of the structure. Effects of

boundaries of the virtual box are eliminated by introducing conventional cyclic boundary conditions. The

algorithms described belong to the class of static methods where the particles are placed at a given time step

and cannot thereafter move. For contrast, dynamic methods assume the reorganization of whole packing

due to either short or long range interactions between particles. In the CRM, N-points randomly dis-

tributed in a virtual box are assigned both radii and random motion vectors. Each sphere is moved until

there are no overlaps. Then the radii are increased and the process is repeated until any further increase in

radii or any displacement of the spheres create overlaps that can not be eliminated (the different versions of
this method can be found e.g. in Clarke and Willey, 1987; Lubachevsky and Stillinger, 1990; Lubachevsky

et al., 1991; Zinchenko, 1994; Knott et al., 2001; He and Ekere, 2001; see also Ogen et al., 1998 where a

detailed description of the advantages and drawbacks of the different algorithms were presented). More

recently, numerical simulations were performed to realize homogeneous and isotropic packing of spheres

by various methods, for instance, by assuming hypothetical spheres having dual structure whose inner

diameter defines the true density and the outer one a nominal density (see Jodrey and Tory, 1985). An

alternative approach (eliminating the boundary effect of the virtual box) is based on the use of spherical

boundary conditions instead of periodic ones (see e.g. Hall, 1988; Tobochnik and Chapin, 1988). There one
simulates hard disks (more exactly a circular cap which can be visualized as a contact lens on the surface of

an eyeball) on the surface of the ordinary three-dimensional sphere and hard spheres on the ‘‘surface’’ of a

four-dimensional hyposphere. The advantage of this procedure is that there is no preferential direction, and

it is impossible to pack particles into perfect regular periodic configurations.
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Close random ensembles of spheres have been studied for many years, and the following quantitative

parameters are well-known. Packing densities for close lattice packing are p=
ffiffiffiffiffi
12

p
� 0:9069 (triangular) in

the case of disks packing into the plane, and p=
ffiffiffiffiffi
18

p
� 0:7405 (fcc or hcp) in the case of spheres packed into

R3. Model experiments were performed using steel balls of equal size randomly packed into shaking con-
tainers. The measured densities are extrapolated to eliminate finite-size effects. These models provide the

conventional value of random close packing such as cRCP ¼ 0:6366� 0:004. Random loose packing equal

cRLP ¼ 0:60� 0:2 is observed at the gentle rolling of a steel balls into the packing container without

shaking. In two dimensions, the experimental numbers for close and loose random packing are estimated

with less accuracy cRCP ¼ 0:8225 and cRLP ¼ 0:601. (see for references Berryman, 1983; Cheng et al., 2000).

It should be mentioned that in contradistinction to the periodic packing, a random close packing is ill

defined problem which has no unique theoretical definition and its final states are protocol dependent in

both the numerical simulation and experimental sense (see for details Torquato et al., 2000).
Since the overall properties of fiber composite materials are sensitive to the details of the microstructure,

the geometrical basis for modeling actual microstructures is needed. Digital image analysis is available for

estimation of descriptors of the spatial arrangement of microstructural features observed in a transverse

cross-section of the material based on the stereological technique (see e.g. Berryman, 1985; Stoyan, 2000).

The classical stereology investigates the spatial structures by planar sections, and statistically analyzes the

visible structures. For example, the local stereology (see Jensen, 1998) shows how mean particle volumes

can be estimated by length measurement. In general, some important spatial characteristics cannot be

estimated stereologically, and the statistical methods based on new microscopic techniques (e.g. confocal
microscopy, see K€oonig et al., 1991; Karlsson and Liljeborg, 1994) using three-dimensional measurement

were proposed. For example, by moving the local plane of a confocal scanning laser microscope up or down

through the specimen, a stack of serial sections, called a brick, is obtained, from which a 3D image may be

produced without the need to use physical sections.

Space Dirichlet tessellations subdividing an Euclidian space into n-dimensional bounded convex poly-

topes (polygons in 2D case) are widely used to characterize the spatial distribution, size, and shape of a

filled phase (see e.g. Ghosh and Mukhopadhyay, 1991). They provide a natural and unique approach for

defining a particle�s neighbors and neighborhood. The Dirichlet tessellation of two-dimensional domain w

yields a network of convex Voronoi polygons containing one inclusion with the center xi (i ¼ 1; . . . ; n) each,
at most. The interior of Voronoi cell associated with the point xi is the region wi ¼ fx 2 w :
jx� xij < jx� xjj; 8j 6¼ ig that is the neighborhood of xi. The tessellation is constructed by plotting lines

to the centers of all nearby particles and then constructing perpendicular bisecting planes to those lines.

Green and Sibson (1977) have proposed the algorithm generating Voronoi polygons for n-points by

computing in Oðn log nÞ time by tracing boundary adjustment, as a new polygon is fitted into a previously

generated set. Ghosh and coworkers (see for references Ghosh et al., 1997) have developed a material based

Voronoi cell method for directly treating multiple phase Voronoi polygons as elements in a finite element
model for elastic and termoelastoplastic problems; they suggested a modification to the standard tessel-

lation procedure to preclude the situation where neighboring fibers are substantially different in size and are

closely spaced, that may result in polygons which do not completely envelope their corresponding fibers,

and may instead ‘‘cut’’ through the fibers. Since each Voronoi cell contains a single particle surrounded by

the matrix, the Dirichlet tessellation can be used for description of a statistical structure of composites in

the form of the frequency distribution, for all cells, of the ratio in particle-to-cell volume that is also a

measure of particle clustering in microstructure (see e.g. Bhattacharyya and Lagoudas, 2000).

In Section 2 of the present paper, the quantitative descriptors of the dispersion of fibers in unidirectional
composites will be analyzed in order to describe the pattern of fiber location as it really exists rather than as

described by some assumed model. Since random packing structures are strongly dependent on the pro-

cedure of their generation, in Section 3 we will consider a few popular algorithms and their combinations

adapted for obtaining the most homogeneous configurations, and will compare the statistical parameters of
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configurations generated by the different methods. In Section 4 one will estimate the dependence of effective

elastic properties of fiber composites on the RDF estimated from the real experimental data as well as from

the ensembles generated by each proposed method.

2. Statistical description of random structure composites

2.1. Some background notions and definitions

Let a linear elastic infinite body occupying full space Rd contains an open bounded domain w � Rd

(window of observation) with a boundary C and with a characteristic function W and space dimensionality

d (d ¼ 2 and d ¼ 3 for 2D and 3D problems, respectively). The domain w contains a homogeneous matrix

vð0Þ and a random finite set X ¼ vi ði ¼ 1; . . . ;NðwÞÞ of inclusions vi with centers xi and with characteristic

functions ViðyÞ equals one in y 2 vi and zero otherwise and bounded by the spherical surfaces

Ci ¼ fy : jy� xij ¼ ag; vð1Þ ¼ [vi ði ¼ 1; 2; . . . ;NÞ. N ¼ NðwÞ denotes the random number of points xi
falling in w; bNN ðwÞ is the observed number of points in w.

At first we summarized some basic ideas, notations and quantities for random point processes such as

e.g. centers of particles (for more details the reader is referred to Ripley, 1977, 1981; Diggle, 1983; K€oonig
et al., 1991; Stoyan and Stoyan, 1994; Stoyan, 2000; Torquato, 2002). We will consider statistically ho-

mogeneous (or stationar) and isotropic ergodic random field X, keeping in mind that the stationarity,

isotropy, and ergodicity can never be tested statistically in their full generality. Stationarity means in-

variance under arbitrary translation, and isotropy means invariant under arbitrary rotation. The ergodicity

ensured that one sample (one-point pattern) is sufficient for obtaining statistically secure results, assuming
the convergence of results obtained for infinitely expanding observation window w. The intensity,

n ¼ EX ð½0; 1�dÞ, of a stationary point process is the mean number of points in the unit cube. A common

unbiased estimator is n̂n ¼ NðwÞ=�ww, �ww � mesw.
The packed random structure can be characterized by several parameters, such as packing density,

coordination number, RDF, particle cage, inter-particle spacing, and others. The various methods of es-

timating the effective properties of a composite material use a knowledge of statistical geometrical infor-

mation about the microstructure. In order to incorporate the spatial arrangement of components in a

micromechanical simulation, it is essential to quantitatively characterize the random structure of the
composite. The most important factors characterizing the microstructure of composite material are the

shape, volume fraction, and arrangement (random or regular) of the components that permit the calcu-

lation of bounds of effective moduli. The popular statistical description of microinhomogeneous media is

based on expectations of products of the characteristic function V ðiÞðyÞ, assuming that the role of the matrix

is assigned to phase �0�. In a simple case the bounding of effective properties uses the multipoint statis-

tic reducing to only one-point probability density (volume fraction) SðiÞ1 ðy1Þ defined as

SðiÞ1 ðy1Þ ¼ hViðy1Þi; ð2:1Þ

where the angle brackets hð�Þi denote an ensemble average. Improved bounds on a variety of different

effective properties have been derived in terms of n-point probability density

SðiÞN ðyNÞ ¼ hViðy1Þ; . . . ; ViðyNÞi; ð2:2Þ

i.e. the probability of simultaneously finding of n-points in a specified geometrical arrangement

yN � y1; . . . ; yN in one of the phases. For example, the one-point correlation function is the probability that

any point lies in any particular. The two-point probability function is the probability that both two-points
y1 and y2 lie in the same phase. This function provides a method for experimentally determining the low-
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order multipoint moments for real two-phase media, as considered by Corson (1974). The medium is as-

sumed to be statistically homogeneous, i.e. SðiÞN ðyN Þ is translationary invariant for any y ¼ const.

SðiÞN ðyN Þ ¼ SðiÞN ðy1 þ y; . . . ; yN þ yÞ: ð2:3Þ

Statistical isotropy of the medium being assumed means invariant under arbitrary rotation. It is also known

that the conventional bounds on effective properties are given in terms of other types of statistical quantities

such as point/q-particle functions, surface–surface correlation functions, nearest neighbor distribution
(NND) function, linear-path function, two-point cluster function, chord-length distribution function as

well as the generalized n-point distribution function for the system of identical spheres Hnðym; yp�m; rqÞ,
which is defined to be the correlation associated with finding m points with positions ym on certain surface

within the medium, p � m with positions yp�m in certain space exterior to the spheres, and q sphere centers

with positions rq, n ¼ p þ q (see for details Torquato, 2002 and references therein). However, although

higher-order correlation functions (N > 3) are obtained on theoretical grounds, this is not a very practi-

cable approach.

Usually the statistical description of the microstructure is performed in terms of the characteristic
functions ViðyÞ. An alternative related approach of quantitative description of the composite microstructure
is based on the consideration of the inclusion centers statistically described by the multiparticle probability

densities fmðx1; . . . ; xmÞ that give the probability fmðx1; . . . ; xmÞdx1; . . . ; dxm to find a sphere center in the

vicinities dx1; . . . ; dxm of the point x
m ¼ ðx1; . . . ; xmÞ. The fm are the most basic descriptors that characterize

the structure of many-particle system and have been well-studied in the statistical mechanics of liquids

(Hansen and McDonald, 1986). In particular, f1 ¼ n, where n is the number density of inclusions connected
with the volume fraction c ¼ n�vvi, �vvi � mesvi. The widely used two-point density f2ðrÞ ¼ f2ðx1; x2Þ
(r ¼ jx1 � x2j) is expressed in terms of RDF gðrÞ as

f2ðrÞ ¼ n2gðrÞ: ð2:4Þ

In the framework of the simplest ‘‘two-point’’ level, Markov and Willis (1998) demonstrated a simple in-

terconnection expressing Sð1Þ2 ðy2Þ as a simple one-tuple integral containing the RDF gðrÞ (2.4). Torquato and
Stell (1985) have related Sð1ÞN to multidimensional integrals over the infinite set of m-particle densities
f1; . . . ; fm (m!1).

The widely used informative function which describes the point distribution is the second-order intensity

function KðrÞ (called also Ripley�s K function) defined as the number of further points expected to be lo-

cated within a distance r of an arbitrary point divided by the number of points per unit area n. Since points

lying outside the observation window w are non-observed, the latter depends strongly on the shape and the

size of w. It is our aim to simulate typical realization which also includes interaction to the structure element

outside of the window while avoiding systematic errors or biases in the estimation procedure. The effect of

the edge of the domain w becomes increasingly dominant at the dimensional increases. A number of special
edge corrections are known. A naive way proposed in the minus-sampling method is to consider w� within
domain w and allow measurements from an object in w� to an object in w. Although the effective sample size

is then the number of points in w, the method, of course, leads to a big loss of information. A much better

idea of edge-correction of the estimator for KðrÞ was suggested by Ripley (1977)

bKK ðrÞ ¼ �wwbNN 2

XX
i6¼j

w�1ij IijðrijÞ; ð2:5Þ

where bNN is the number of points xk (k ¼ 1; . . . ; bNN ) in the field of observation w with the area �ww, IijðrijÞ is the
indicator function equals 1 if rij 6 r and zero otherwise where rij is a distance between the points xi and xj.

wij is the ratio of the circumference contained within w to the whole circumference with radius rij. For
circles intersecting the boundary ow, the function wij compensating for the boundedness of w is less than
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one and has an explicit formula when the field of observation w is rectangular (see Diggle, 1983; the for-

mulae and algorithm for 3D case were proposed by K€oonig et al., 1991). The function KðrÞ (2.5) is obtained
by averaging over all inclusions at each value of r. Eq. (2.5) is an approximately unbiased estimator, which

is free of systematic errors, for sufficiently small r because N=�ww is a slightly biased estimator for n. In 2D,
Diggle (1983) recommended an upper limit of r equal to half the length of the diagonal of a square sampling

region.

Due to the wide utilization of periodic boundary conditions in numerical simulations of random

packing, an alternative toroidal edge correction is often used (and precisely this method will be explored

hereafter in this paper for the elimination of the boundary effect) in which each rectangular region w can be

regarded as a torus, so that points on opposite edges are considered to be closed. Then w can be considered

to be part of a grid of identical rectangles, forming a border around the pattern inside w. Distances are then

measured from the point in the central rectangle w to points in the surrounding periodic rectangles (see
Ripley, 1981).

The RDF gðrÞ (2.4) which plays a role similar to the variance in a classical analysis of random variables

is defined as the radial distribution of the average number of sphere centers per unit area in a spherical shell.

The RDF can be estimated from second-order intensity function as

gðrÞ ¼ 1

dxdrd
dKðrÞ
dr

; ð2:6Þ

where xd is the volume of the unit sphere in Rd . The RDF is related to the derivative of KðrÞ (2.6), and is

therefore it is more sensitive to changes in the spatial order than is the function KðrÞ.
The interaction effects generating the local stresses produced by inclusions are highly sensitive to their

locations. In so doing the non-linear processes such as fracture and fatigue are far more sensitive to local

stresses and, therefore, to local variations of microstructure then other mechanical phenomena. Because of

this, in the deformation and fracture processes,another important statistical parameter of the location of

inclusions is a NND function (see e.g. Pyrz, 1994) defined by the density N ndðrÞ such that NndðrÞdr equals to
the probability that there is no other inclusion centroid in a circle of radius r with the center xi, and there is

at least one inclusion centroid in the ring of radius r and ðr þ drÞ. Ripley (1977) introduced the following

unbiased estimator for NndðrÞ taking the edge effect into account. For x1; . . . ; xN 2 w, let qi be the distance

from the point xi to its nearest neighbor in w, and let qo
i be the shortest distance from xi to the boundary ow.

Then the estimator for NndðrÞ is given by

NndðrÞ ¼ #fqi 6 r ^ qo
i > rg

#fqo
i > rg ; ð2:7Þ

where #ð�Þ is the counting function which tallies the number of points in the specified set. In the estimator

(2.7), only the points are analyzed for which the nearest neighbor distance qi is smaller than the smallest

distance qo
i to the boundary ow. The average neighbor distance hNndi is found by the formula

hNndi ¼
Z 1

0

rNndðrÞdr: ð2:8Þ

The nearest neighbor and higher-order neighbor distributions can be estimated experimentally by mea-

suring the frequency of occurrence of different distances of different order neighbors of the inclusions for a

large number of inclusions.

2.2. Materials and image analysis procedures

A carbon fiber-reinforced epoxy composite is chosen for microstructural analysis. Ten specimens of this

composites produced by the different technological regime are analyzed. Each specimen containing 10
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samples was cut using a diamond saw from a unidirectional composite laminate, and each specimen was

first sanded and then polished to a 0.5 lm finish on the cross-section area, 20 mm� 1:5 mm. A microscopic

image with 200� magnitude for microstructural analysis of samples was taken using an optical microscope.

Fig. 1. (a) Fragment of the original micrograph of fiber composite material microstructure; (b) unsharp mask applied; (c) closing

operation applied; (d) darkest filter applied; (e) thresholded image (gray edge features are rejected); (f) EDM applied; (g) fiber cent-

roids; (h) combined image showing centroid positions on original fiber profiles.
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Each image of the sample contains approximately 1800 fibers. The fiber volume and spatial distribution

were determined from the image analyzer that is capable of calculating the fiber volume and the coordinate

of each fiber.

Digital images of transverse sections through the fiber composite material were obtained by digitizing
high-resolution optical micrographs, using standard methods (see e.g. Louis and Gokhale, 1994; Spowart

et al., 2001; Shan and Gokhale, 2002 where additional references can be found). Care was taken to

maximize the contrast between the fibers and matrix in the original micrograph, Fig. 1(a). Image processing

was then carried out on the 1024� 1024 digital images using a commercially-available desktop software

package (Adobe Photoshop 5.5) in conjunction with a plug-in Image Processing Tool Kit (see Russ, 2001).

The following sequence of operations was applied to the grayscale digital images in order to locate the fiber

centroids in the transverse plane.

First, an Unsharp Mask is applied, Fig. 1(b). This filter increases the contrast between the fibers and the
matrix, and assigns the central portion of each fiber a uniform gray level. This reduces the influence of fiber

edge effects, allowing a more accurate determination of the true fiber centroid. To be most effective,

the mask is applied at the highest level (500%), over a distance roughly equivalent to the mean fiber dia-

meter.

Next, a closing (rank) operation is carried out on the image to separate each fiber from its neighbor,

Fig. 1(c). The rank operation is applied to every pixel in the image, and extends over a 3� 3 pixel

neighborhood, equivalent to 5% of the mean fiber diameter. After the filter has been applied, neighbor-

ing fiber profiles are effectively segmented by assigning them different grayscale values. The separation of
each fiber by grayscale in this manner allows each fiber profile to be recognized as a distinct micro-

structural feature, which is crucial to the determination and assignment of individual fiber centroid co-

ordinates.

The Darkest (rank) filter is then applied to every pixel in the image, Fig. 1(d). This operation auto-

matically selects the darkest pixel in the 3� 3 neighborhood surrounding the central pixel, and replaces the

central pixel with this grayscale value. The darker areas in the image (corresponding to the matrix areas

between the individual fibers) therefore propagate outwards, effectively reducing the extent of the fiber

features until only their cores remain. The image is then thresholded to obtain a binary image, and then
inverted to produce black fiber features on a white matrix background, Fig. 1(e). Fiber profiles that in-

tersect the edges of the image are rejected in subsequent processing steps.

A Euclidean distance map (EDM) filter is then applied to the image, Fig. 1(f). This filter assigns

grayscale values to the pixels within each fiber feature, according to their linear distance from the edge of

the feature. Thus, the pixels at the centroids of each fiber are assigned the highest gray levels. An additional

binary erosion step is sometime needed here, if the EDM operation does not result in a single pixel at the

centroid of each fiber the first time. This has only a minor effect on the overall results. Finally, the image is

thresholded again, to produce an image with single black pixels at each of the fiber centroids, Fig. 1(g).
Once the image is reduced to an array of black pixels corresponding to the centroid positions of each

fiber profile, it is a simple matter to extract the coordinates, using the IPTK software or any other suitable

computer code. The coordinates are output as integer pairs in the range [1,1024], and are subsequently

renormalized for input into the microstructural models.

3. Numerical simulation

Since random packed structures are strongly dependent on the procedure of their generation, we will

consider a few popular algorithms and their combinations, and will compare the statistical parameters of

configurations generated by each different method.
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3.1. Poisson distribution

Various models have been proposed for the generation of center coordinates of randomly packed

spheres. If the sphere radii are small enough then their centroid coordinates will be described by the sta-
tionary (or homogeneous) Poisson point process for which: for any bounded region w the number of points

of X falling in w follows the Poisson distribution

P ðNðwÞ ¼ kÞ ¼ ðn�wwÞ
k

k!
expð�n�wwÞ; k ¼ 0; 1; . . . ð3:1Þ

and for non-overlapping sets w1; . . . ;wm, the numbers Nðw1Þ; . . . ;NðwmÞ are independent random variables.

These properties imply stationarity and isotropy because of the translation and rotation invariance of

volume. A further implication is that the point positions are independent and uniformly distributed within

w. The uniform (binomial) point process of a given number NðwÞ ¼ N of points x1; . . . ; xN , independent and
uniformly distributed in w, if for non-overlapping bounded w1; . . . ;wN � w,

P ðx1 2 w1; . . . ; xN 2 wNÞ ¼ ð�ww1; . . . ; �wwN Þ=ð�wwÞN ð3:2Þ
with the binomial distribution of the number of points in any bounded region wj � w:

P ðNðwjÞ ¼ kÞ ¼ N
k

� �k

ðpðwjÞÞkð1� pðwjÞÞN�k; k ¼ 0; 1; . . . ;N ; ð3:3Þ

where pðwjÞ ¼ �wwj=�ww, ENðwjÞ ¼ NpðwjÞ and VarNðwjÞ ¼ NpðwjÞð1� pðwjÞÞ.
A stationary Poisson point process may serve as a reference model for complete spatial randomness and

can be easily simulated with a computer. For example, NðwÞ points are generated with uniform random

position in a region w ¼ ½0; L1� � � � � � ½0; Ld � as a sequence of dNðwÞ independent random numbers

x1; . . . ; xdNðwÞ uniformly distributed on ½0; 1� and generated by a random number generator. The coordinates

of the ith ði ¼ 1;NðwÞÞ point are then xi ¼ ðL1xdi�dþ1; . . . ; LdxdiÞ>. Although the hypothesis of a Poisson set

of centers for non-overlapping spheres is not fulfilled for finite sphere radii, it can often be used as a useful

approximate description of the observed structures (see Ripley, 1977).

We recall that for Poisson distribution

KðrÞ ¼ xdrd ; and gðrÞ ¼ 1; ð3:4Þ
and the expectation mean hNndi and variation Eðs2Þ of nearest neighbor distances are estimated as (d ¼ 2,

see Spitzig et al., 1985)

hNndi ¼ 0:4n�1=2;Eðs2Þ ¼ 4� p
2pn

: ð3:5Þ

3.2. Hard core model

The extension of Poisson distribution process as a static model is the generation of random assemblies of

n non-overlapping disks by the hard core model (HCM) (called also random sequential adsorption model,

see e.g. Feder, 1980; Hinrichsen et al., 1986 and simple sequential inhibition): disks with radius a are placed

one by one with the center positions X ¼ ðx1; . . . ; xN Þ being distributed randomly and uniformly over the

set of all points in a rectangular region x of size ½�0:5; 0:5� � ½�0:5; 0:5�. Although the distribution of disks
depends heavily on the shape and size of w, usually researchers assume in mind a homogeneous structure in

the whole space which is observed only in w. To avoid this discrepancy, one supposes the periodic boundary

conditions, that is x and X are periodically replicated in all directions. If the new disk does not overlap
already deposited disks, its position is fixed and does not move anymore; otherwise, it is rejected and
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another random center position is generated. The process is finished when either a preassigned packing

fraction is achieved or when no more particles can be added (jamming limit) which occurs at a volume

fraction c � 0:55 (2D case) or c ¼ 0:38 (3D case) (see Tanemura, 1979; Lotwick, 1982). The mathematically

formalized descriptions of other versions of the HCM using either a technique of a birth-and-death process
with vanishing death rate or the Matern�s thinning rule can be found in Stoyan et al. (1995).

The HCM provides a more realistic reference model than a Poisson point process, in which arbitrary

small distances between points are allowed. The advantage of protocol independence in the HCM is sac-

rificed in the case of generation of binary or polydisperse structures (see e.g. Davis and Carter, 1989;

Sinelnikov et al., 1997; He et al., 1999). Indeed, after an unaccepted trial one can keep the previous choice

of inclusion radius or choose to replace it. The real situation then lies between two limiting cases of

jamming limits, the packing density generated by first placing the larger particles and then the smaller

particles will be higher than the opposite case, where the small particles are placed before the big ones. The
geometrical blocking effect and the process irreversibility leads to packing configurations that are essentially

different from the corresponding equilibrium configuration (see Widom, 1966). To prevent just this kind of

low-density jamming in the following model, we will shake the disks.

3.3. Hard core shaking model

Hard core shaking model (HCSM) is a type of HCM which generates an increasing number of inclusions

in a virtual box w accompanied by a shaking process, i.e. giving each disk a small random displacement

independent of its neighbors� positions. This makes it possible to unlock the disks from the jamming

configuration (which takes place for HCM at c � 0:55) and allows them to find the most homogeneous and

mixed arrangement. Various algorithms have been devised to simulate reordering due to shaking or vi-
bration of dense packing (see Barker, 1993) which reduces the volume concentration of the high density jam

configuration. Packing configurations containing a wide range of inclusion concentrations have been in-

vestigated less and necessitative some additional consideration. In order to describe the algorithm used in

this paper, at first one introduces the following definitions.

To speed up the calculations it is useful to check the collision partners vjðj ¼ ji1; . . . ; j
i
nt
Þ of vi only in

some restricted neighborhood of xi called testing window wi
t ¼ fx : jx� xij < Rtg (Rt ¼ const:). In this

model, the neighbors of a disc are considered to be the set of discs whose centers lie within some maximum

distance called the testing window wi
t of that disk rather than the ‘‘geometric neighbors’’ which can be

determined by the more computationally expensive Delaunay tessellation (see e.g. Okabe et al., 1992). The

reason for the use of the testing window wi
t instead of the Delaunay tessellation is that each nt�vvi is an es-

timation of local volume fraction which coincides with c only for an infinitely large testing window. If

nt < 7 for Rt ¼ 3a then a new uniformly distributed inclusion is generated in the area wi
t n v0i in a spirit of the

HCM described above, where v0i is a spherical ‘‘included volume’’ with the center xi and the radius 2a (since
inclusions cannot overlap).

Another way to speed up the calculations is to carry out the shaking process only within a local shake up

window. The random local shaking is established in a shake up window wsh ¼ fx : jx� xij < Rt � 2ag
(Rt ¼ const:) whereby the inclusion center xi is randomly moved to a position x0i uniformly distributed in

wsh. If the particle does not overlap with any other inclusions the shaking is accepted, otherwise the trial

shaking is repeated until the number of attempted trial shakings exceeds some limit. Only the near neighbor

set of inclusions vj ðj ¼ ji1; . . . ; j
i
nt
Þ which are located in the testing window wi

t are checked for overlap,

which also reduces the computer time. One determines the optimal size for the shake up window

Rt � 2a ¼ 1:1a which provides the minimum average number of trial shaking attempts. This number in-

creases from 5 to 8 when the packing density grows from c ¼ 0:5 to 0.8. This size of shake up window

provides the fastest stabilization of statistical parameter estimations. However, their values do not depend
on the size of the window and are, furthermore, protocol independent (in contrast with the known methods
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of random close packing simulations, see e.g. Torquato et al., 2000). The shaking process passes through all

inclusion (so called global shaking) with re-estimation of the neighbor inclusions in the testing window wi
t

after each local shaking of the inclusion vi. In so doing, the increasing number of shaking has a twofold

effect. On the one hand, the system is becomes more homogeneous and well-mixed and on the other hand,
the stochastic fluctuations of statistical parameters (such as e.g. gðrÞ and N ndðrÞ) estimated by averaging of

these structures tend to diminish.

In Fig. 2 comparative analyzes of the RDF gðrÞ as a function of r estimated by the HCM and HCSM are

presented for the fiber concentrations c ¼ 0:5, 0.55. The plot of gðrÞ of the configuration generated by the

HCM was obtained by the averaging over 30 realizations; the other curves each correspond to a single

realization. In so doing, the regular shaking procedure of the HCSM yields the fitting of averaging curves

gðrÞ � r. As can be seen, the HCSM leads to more long range ordering than the HCM, and at the same c

the RDF gðrÞ for a small r is higher for structures simulated by the HCM rather than by the HCSM. It
should be mentioned that for a population of finite size fibers, a value of gðrÞ higher than 1 does not

necessarily imply that the fibers are clustered. Comparison of the histograms of the average number nt of
inclusions in the rectangular testing window wi

t ¼ fx : jxl � xilj < Rt; l ¼ 1; 2g (Rt ¼ 3a) is presented in Fig.

3 from the figure we notice that the compromise of the shaking procedure with the modified HCM leads to

a more homogeneous and well-mixed arrangement: the fraction pðntÞ of testing windows containing both

the small and large numbers nt of inclusions are diminished. Obviously, the descriptor pðntÞ is a more

sensitive measure of the local statistical homogeneity of the configuration analyzed than the RDF gðrÞ is.
In Fig. 4 the statistical descriptors gðrÞ estimated from experimental data are presented. One analyzed

the single sample s11 from the specimen S1 (s1i � S1; i ¼ 1; . . . ; 10) containing 1800 fibers, the results ob-

tained by the averaging over 10 samples s1i � S1 and s2i � S2 (i ¼ 1; . . . ; 10) as well as the result of averaging
over 10 specimens Sj, (j ¼ 1; . . . ; 10) of materials produced by the different technological regimes each of

them contains 10 samples. As can expected, the increasing of samples treated leads to the smoothness of the

curves gðrÞ. In Fig. 5 the histograms of distributions of fibers in a tested window with the size Rt ¼ 3:1a are
presented for the averaging over the configurations simulated by the HCSM as well as the averaging over

the 100 experimental samples containing 1800 fibers each. As can be seen, the HCSM generates significantly

more homogeneous and mixed arrangement then the real slightly clustered structures (compare with Fig. 3):
the fractions pðntÞ of testing windows containing both the small and large numbers nt of inclusions decrease.

Fig. 2. The RDF gðrÞ vs relative radius r=a estimated by the HCM at c ¼ 0:55 (––) and c ¼ 0:5 (� � �), and by HCSM at c ¼ 0:55 (-�-�-)
and c ¼ 0:5 (- - -).
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The Monte Carlo shaking process is both the most structurally influential and, computationally, the
most intensive part of the whole packing process. The duration of this phase, which can be measured in

terms of the number of Monte Carlo steps per particle, NMC=N , can be changed by varying of the size of the
shake up window and the frequency ratio of the alternation of the processes between generation of a new

particle and the shaking. However, the results of total simulation are not related trivially to the details of

the separate stages. In Fig. 6 we have plotted for one of plausible set of input parameters, the area fraction

vs the duration of the Monte Carlo simulation NMC=N . Only at low particle concentrations c < 0:52 does
the HCM allow us to generate the random packing faster than the HCSM. As the packing density increases

from 0.52, the proportion of non-accepted trial generations dramatically increases in the vicinity of the
jamming limit and equals, for example, 99.998% at c ¼ 0:5445 and N ¼ 3130 with a CPU time of 5 h for a

Fig. 3. Histogram of fractions pðntÞ of testing window containing nt inclusions generated by the HCM (solid curve) and by the HCSM

(dotted curve).

Fig. 4. The RDF gðrÞ vs relative radius r=a estimated from experimental data for: a single sample s11 (dashed curve), averaged over 10
samples s1i, (i ¼ 1; . . . ; 10) (dotted curve), at c ¼ 0:65, averaged over 10 samples s2i, (i ¼ 1; . . . ; 10) (dot-dashed curve), averaged over

ten specimens produced by the different technological regime and containing ten samples each (solid curve).
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PC with a 644 MHz processor. At c � 0:65, the advantage of the HCSM over the HCM in creating more

homogeneous configurations degenerates (see Fig. 3). Additional shortcomings are the absence of the

testing windows with a small numbers of particles and a finite empty volume with a diameter of more than

2a. Thus, the HCSM stumbles over an intrinsic obstacle in the form of a jamming limit cHCHM � 0:67. This
limit is more ‘‘fuzzy’’ than the jamming limit for the HCM cHCM ¼ 0:55. Forthcoming expansion of the

particle concentration is possible through the utilization of the growth of the particle radius considered in
Section 3.5.

3.4. Initially periodic shaking model

The periodic lattice packing K

xm ¼ m1e1 þ m2e2 ð3:6Þ

Fig. 5. Histogram of fractions pðntÞ of testing window containing nt fibers: generated by the HCSM at N ¼ 3700, Nt ¼ 3:1a (solid

curve), averaged over 100 samples (dotted curve).

Fig. 6. Length of Monte Carlo simulation NMC=N vs an area fractions c appropriate to the HCM (solid curve) and to the HCSM

(dotted curve).
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of centers of the disks with the radius a were chosen as an initial system. Here el (l ¼ 1; 2) are linearly-
independent vectors, m ¼ ðm1;m2Þ are integer-valued coordinates of mode m in the basis el which are equal

in modulus to jelj. In particular, for orthogonal basis e1 ¼ ð1; 0Þ>, e2 ¼ ð0; 1Þ> and for integer set

ðm1;m2Þ 2 Z2 independent of one another, the lattice K defines a square packing. The basis e1 ¼ ð0:5; 0Þ>,
e2 ¼ ð0;

ffiffiffi
3

p
=2Þ> with the coefficients ml (l ¼ 1; 2Þ which are either all even or odd, leads to a triangular

packing.

The rearrangement of initially periodic structures is conducted by the shaking procedure described in

Section 3.3. The statistical parameters gðrÞ, NndðrÞ are estimated by the averaging analysis of a few global

shakings allowing inclusion configurations to be generated that are more homogeneous and well-mixed.

Stabilization of estimations of gðrÞ, N ndðrÞ with increased numbers of global shakings leads to convergence

of the shaking process. One disadvantage of this is that there is no guarantee that the initially periodic

structure will be completely ‘‘destroyed’’ by the shaking. This deficiency is overcome by using the HCSM.
The advantage of the present model is that a fixed concentration of inclusions negates the use of other

procedures, such as an incrementing of the number of inclusions or increasing the inclusion radii.

Fig. 7 shows gðrÞ as estimated by the Initially periodic shaking model (IPSM) with an initially triangular

packing of inclusions and different numbers of global shakings (c ¼ 0:65). As can be seen from the figure,

the estimate for the RDF becomes stable if the number of global shakings is more than 50; in these situ-

ations the CPU time for one global shaking equals 103 s at N ¼ 3700, Rt ¼ 3:1a. Comparison of gðrÞ es-
timated by IPSM with initial triangular and square packing of inclusions at 100 global shakings as well as

by the HCSM was performed also at c ¼ 0:65. From the figure there is reason to believe that a sufficiently
intensive shaking process would eliminate the sensitivity of the results obtained for the concrete algorithm

of the simulation of the random inclusion ensemble as well as on the initial arrangement of inclusions.

Shubin (1995) has drawn the similar conclusions, in researching the close 3D packing of different initially

periodic configuration of hard spheres.

3.5. Collective rearrangement model

Just for completeness we will briefly introduce the CRM accompanied by the shaking procedure. We

start with a unit square (0; 0) and its periodically located neighbors labeled by the duplet of integer numbers
a ¼ ða1; a2Þ 2 Zþ where a1; a2 ¼ 0;�1. N random points xi (i ¼ 1; . . . ;N ) in the central square periodically

Fig. 7. The RDF gðrÞ vs relative radius r=a estimated by the IPSM at c ¼ 0:65, N ¼ 3700: 150 shaking (solid curve), 100 shaking

(dashed curve), 30 shaking (dot-dashed curve), 10 shaking (dotted curve).
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reflected into the neighboring squares are assigned to the initial velocities vi ¼ ðvi1; vi2Þ whose components
are independently distributed at random between )1 and þ1 and to the uniformly growing inclusions with

the radii aðtÞ ¼ a0t. The centers of the inclusions move according to the equations

dx

dt
¼ vi ð3:7Þ

with a discontinuous change of the vectors vi at the moment the the particle exits through a face of a central
square as well as during collisions with other inclusions.

The collision time is obtained from the condition that the separation distance is the current diameter,

that for the inclusions vi and vj is

jxi þ viDt � xj � vjDtj ¼ ða0t þ a0DtÞ: ð3:8Þ

In the case of the collision, the smaller positive root Dt of Eq. (3.8) defines the collision time sij. If the
collision takes place between the inclusions vi and vj from central and neighboring squares (e.g. identified by

()1,0)), respectively, then xj in Eq. (3.8) should be replaced by xj þ ð�1; 0Þ with a subsequent estimation of
a collision time sij. The exit time sC

i is estimated as the smallest positive time for exiting of the inclusion vi
being considered through the one of sides of the central square. The determination of Dt� ¼ minðsij; sC

i Þ
allows possible the estimation of the new inclusion radii a0ðt þ Dt�Þ and the identification of either colliding
(vi� and vj� ) or exiting (vi�) inclusions for which the new velocities and locations are re-estimated. For all

other inclusions the position vectors are updated according to Eq. (3.7): xi ! xi þ viDt. For these inclusions
Dt ¼ Dt� and velocities vi remain unchanged. In addition, the collision and exit times are corrected

sij ! sij � Dt� and sC
i ! sC

i � Dt�, respectively. The details of the re-estimation of velocities for the inclu-

sions vi� and vj� based on the conservation laws of the momentum and energy can be found in Lubachevsky
et al. (1991), and Knott et al. (2001).

Up to this point, a single step of the CRM has been defined. Repeating this step leads to the close

packing demonstrated by Lubachevsky et al. (1990). However, because our goal is different (i.e. the simu-

lation of well-mixed, random structures over a complete range of inclusion concentrations), further cor-

rections to the algorithm were necessary. The algorithm is modified so that after a few repetitions

estimating new velocities for the colliding inclusions, the procedures of (A) generating new inclusions in

low-density testing windows and, (B) inclusion shaking (described in Section 3.3) are carried out.

Both experiments and simulations suggest a transition between random and ordered configurations in
the vicinity of a density c � 0:8 (see e.g. Rankenburg and Zieve, 2001). The packing density increases much
more slowly beyond this point. The understanding of this transition is more obvious after quantitative

analysis given in Figs. 8 and 9 showing the RDFs gðrÞ estimated by the modified CRM for different disk

concentrations c ¼ 0:60–0:75 and c ¼ 0:75–0:90, respectively. As can an be seen, for high disk concen-

trations the plot of the RDF has a second peak which is characteristically split as was observed in the

experimental packing (see e.g. Murata et al., 1996; Cargill, 1994). The split peak demonstrates the presence

of large clusters with close triangular disk packing (see e.g. Turnbull and Cormia, 1960). In order to analyze

the plots gðrÞ � r in Fig. 9 we will compare the coordinates of their peaks with the analogous peaks for
close triangular and square packing. A distinguishing characteristic of the last regular packing is the

presence of ‘‘fixed’’ peaks corresponding to r ¼ 2a, 4a, 6a, . . ., and ‘‘floating’’ subpeaks, the location of

which depend on the specific structure of the unit cell. For the triangular and square packing the coor-

dinates of the subpeaks are r ¼ 3:46a, 5:32a, . . ., and r ¼ 2:83a, 4:44a, 6:3a, . . ., respectively. Imperfection,
both in the identification of the disk centers and in the lattice itself, broaden the peaks and raise the heights

of the intervening values. Thus, one can presuppose that the second subpeak in Fig. 9 at r ¼ 3:47a is caused
by the influence of local ordering in the form of clusters with the triangular structure.

It should be mentioned that the modified CRM is not as optimal as the original CRM for modeling
close-packing configurations simply because the added procedure of random shaking is just focused on the

V.A. Buryachenko et al. / International Journal of Solids and Structures 40 (2003) 47–72 61



‘‘destruction’’ of dense ‘‘locked’’ local configurations in some testing windows, leading to the generation of
highly homogeneous and mixed structures. In relation to the last statement, it should be mentioned that the

work by D€ooge (2000) combines various Metropolis–Hastings algorithms to obtain a simulation algorithm

with good mixing properties. However, the comparison of Fig. 2 by D€ooge (2000) for the RDF gðrÞ with
c ¼ 0:65 and c ¼ 0:735 indicates that his gðrÞ function reflects more order. On the other hand, the modi-

fication of the known simulation protocol by adding a shaking procedure has some additional benefits. So,

in the HCM, CRM, and sequential generation models, the parameters and functions are calculated only

from one simulation of the generated configuration. These data should be considered as merely a single

realization of such a random generation process. In order to provide statistically more reliable results it
would be necessary to average several realizations. However, this repeating procedure is not necessary in

the protocols accompanied by a shaking procedure because a configuration generated by a few global

Fig. 8. The RDF gðrÞ vs relative radius r=a estimated by the modified CRM at c ¼ 0:60 (dashed curve), c ¼ 0:65 (dot-dashed curve),

c ¼ 0:70 (dotted curve), c ¼ 0:75 (solid curve); N grows from 799 to 811.

Fig. 9. The RDF gðrÞ vs relative radius r=a estimated by the modified CRM at N ¼ 811 and c ¼ 0:90 (solid curve), c ¼ 0:85 (dotted

curve), c ¼ 0:8 (dot-dashed curve), c ¼ 0:75 (dashed curve).
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shakings can be regarded as a separate realization. The total computer time required for statistical analysis

varies considerably with the inclusion number N as well as with the number of global shakings homo-
genizing the generated configuration.

In Fig. 10 we compare the RDF estimated from the experimental fiber centroid data with that from

numerical simulation by the CRM, as well as the RDF represented analytically by

gðxi � xqÞ � Hðr � 2aÞ; ð3:9Þ

gðxi � xqÞ ¼ Hðr � 2aÞ 1

(
þ 4

p
p

"
� 2 sin�1

r
4a

	 

� r
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

16a2

r #
Hð4a� rÞ

)
; ð3:10Þ

where H denotes the Heaviside step function, r �j xi � xq j is the distance between the non-intersecting

inclusions vi and vq, and c is the area fraction of inclusions. The so-called well-stirred approximation for the

RDF differs from the RDF for a Poisson distribution (3.4) by the availability of included volume with the

center xi where gðxi � xqÞ � 0. Eq. (3.10) (see Torquato and Lado, 1992; Hansen and McDonald, 1986)
takes into account a neighboring order in the distribution of the inclusions. Fig. 10 shows a good fit be-

tween RDFs estimated from experimental data and a from numerical simulation by the modified CRM and

a substantial dissimilarity from the curves (3.9) and (3.10).

4. Effective elastic properties

4.1. Multiparticle effective field method

First, we will summarize the basic assumptions and the final formulae of the multiparticle effective field

method (MEFM) for estimation of effective elastic moduli. For a detailed discussion and numerous ref-

erences for this and related methods, the reader is referred to Buryachenko (2001a).

Assume stresses and strains are related to each other via the constitutive equation

rðxÞ ¼ LðxÞeðxÞ; ð4:1Þ

Fig. 10. The RDF gðrÞ vs relative radius r=a estimated by the numerical simulation (solid curve), from experimental data (dotted

curve), by the analytical approximation (3.10) (dot-dashed curve), by the well steered approximation (3.9) (dashed curve).
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where L is the fourth-order elasticity tensor, which for isotropic materials is given by

L ¼ ð3k; 2lÞ � 3kN1 þ 2lN2, N1 ¼ d d=3, N2 ¼ I�N1, k and l are the bulk and shear modulus, re-

spectively; d and I are the unit second-order and fourth-order tensors. The local strain and stress tensors

satisfy the linearized strain–displacement relations and the equilibrium equation, respectively. The ho-
mogeneous boundary conditions take place uðxÞ ¼ eowðxÞx, where eowðxÞ ¼ const:, (x 2 C) is a given

symmetric tensor.

The general integral equation is known (see for references Buryachenko, 2001a)

eðxÞ ¼ heiðxÞ þ
Z
Uðx� yÞ gðyÞ½ � hgðyÞi�dy; ð4:2Þ

where the tensor gðxÞ ¼ L1ðyÞeðyÞ is called the stress polarization tensor, and the notation hð�Þi will be used
for the statistical average. The tensor of elastic properties is decomposed as LðxÞ � Lð0Þ þ L1ðxÞ ¼
Lð0Þ þ LðmÞ1 ðxÞ. Here and in the following, the upper index ðmÞ (m ¼ 0; 1) indicates the components and the

lower index i indicates the individual inclusions; vð0Þ ¼ w n vð1Þ, vð1Þ � [vi, V ðxÞ ¼
P

ViðxÞ, and V ð1ÞðxÞ is a
characteristic function of vð1Þ ði ¼ 1; 2; . . .Þ. The integral operator kernel Uðx� yÞ � rrGðx� yÞLð0Þ is
defined by the Green tensor G of the Lame� equation of a homogeneous medium with an elasticity tensor

Lð0Þ: rfLð0Þ½r  GðxÞ þ ðr  GÞ>�=2g ¼ �ddðxÞ; dðxÞ is the Dirac delta function.

After conditional statistical averaging Eq. (4.2) turns into an infinite system of integral equations. In

order to close and approximately solve this system we now apply the MEFM hypotheses

H 1. Each inclusion vi has an ellipsoidal form and is located in the field

�eeðyiÞ � �eeðxiÞðy 2 viÞ ð4:3Þ

which is homogeneous over the inclusion vi.

H 2. Each pair of the inclusions vi and vj is located in an effective field êeðxÞi;j and

hêeðxÞi;jik ¼ h�eekiðxÞ ¼ const: ðx 2 vk; k ¼ i; jÞ: ð4:4Þ

According to hypothesis H1 and to Eshelby�s theorem we get (x 2 vi)

eðxÞ ¼ A�eeðxÞ; �vvigiðxÞ ¼ R�eeðxÞ; ð4:5Þ

where R ¼ �vviL
ð1Þ
1 A, A ¼ ½Iþ PL

ð1Þ
1 �

�1
and the tensor P � �hUiðiÞ is associated with the well-known Eshelby

tensor S by S ¼ PLð0Þ. Hereafter gi � hgðxÞViðxÞiðiÞ is an average over the volume of the inclusion vi (but not
over the ensemble), hð�Þii � hhð�ÞiðiÞi, and the tensors

Tiðy� xiÞ ¼
�ð�vviÞ�1Pi; y 2 vi;
hUðy� xÞViðxÞiðiÞ; y 62 vi;

�
Tijðxi � xjÞ ¼ hTiðz� xiÞiðjÞ ð4:6Þ

(z 2 vj 6¼ viÞ have analytical representations for the spherical inclusions in an isotropic matrix. In the

framework of the hypothesis H1, the Eq. (4.2) is reduced to the equation with respect to the stress po-

larisation tensor

gðxÞ ¼ Rhei þ
Z
RUðx� yÞ gðyÞV ðyj; vi; xiÞ½ � hgðyÞi�dy; ð4:7Þ

where V ðyj; vi; xiÞ ¼
P

j VjðyÞ � ViðyÞ, j ¼ 1; 2; . . .
The hypotheses H1, H2 can be used for an approximate solution of Eq. (4.2) and subsequent estimation

of effective elastic moduli in the overall constitutive equation hri ¼ L�hei:
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L� ¼ Lð0Þ þ YRn; Y�1 ¼ I�
Z

Tiqðxi � xqÞdxq; ð4:8Þ

Tiqðxi � xqÞ � Rin Tiqðxi
�

� xqÞ½Zqi þ Zqq�gðrÞ � Tiðxi � xqÞ
�
; ð4:9Þ

where r ¼ jxq � xij, and the matrix elements Zqi, Zqq are non-diagonal and diagonal elements, respectively,

of the binary interaction matrix Z for the two inclusions vq and vi with the elements of the inverse matrix

ðZ�1Þiq ¼ Idiq � ð1� diqÞRqTiqðxi � xqÞ: ð4:10Þ

Thus, the effective elastic moduli L� explicitly depend on the RDF gðrÞ and the volume concentration

c ¼ n�vvi of inclusions. The neglect of the binary interaction of inclusions

Ziq ¼ Idiq ð4:11Þ

reduces the formula (4.7) for the effective elastic moduli to the analogous relation obtained by Mori–

Tanaka (MT) method which is invariant to the RDF gðrÞ.
In order to demonstrate the comparison of the available experimental data with the predicting capability

of the proposed method, we will consider the estimation of the effective elastic moduli L� (4.8). Assume the

matrix is epoxy resin (kð0Þ ¼ 4:27 GPa and lð0Þ ¼ 1:53 GPa) which contains identical circular glass fibers
(kð1Þ ¼ 50:89 GPa and lð1Þ ¼ 35:04 GPa). Four different RDF for the inclusions will be examined (see

Torquato and Lado, 1992; Hansen and McDonald, 1986). As can be seen from Fig. 11 the use of the

approach (4.7) and (4.10) based on the quasi-crystalline approximation (4.10) (also called MT approach)

leads to an underestimate of the effective shear modulus by 1.85 times for c ¼ 0:7 compared with the ex-

perimental data. Much better approximations are given by the MEFM (4.7)–(4.9) which shows good

agreement with the experimental data provided by Lee and Mykkanen (1987). In the MEFM model, the

best fit is obtained using the RDF simulated by the modified CRM.

Let us now demonstrate an application of the theoretical results by considering an isotropic composite
made of an incompressible isotropic matrix, filled with rigid disc inclusions of one size (n ¼ 1). This ex-

ample was chosen deliberately because it provides the maximum difference between predictions of effective

elastic response, as estimated by the various methods. In Fig. 12 the most advanced micromechanical model

Fig. 11. Variation of the effective shear modulus l� as a function of a concentration of the inclusions c. Experimental data (") and
curves calculated by Eqs. (4.7)–(4.9) and (3.10) (solid line), by (4.7)–(4.9) and (3.10) with the RDF simulated by the modified CRM

(-�-�-), by Eqs. (4.7)–(4.9) and (3.9) (dashed curve), by the MT method (� � �), and by the boundary element method of the hexagonal

fiber packing by Eischen and Torquato (1993).
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(4.7)–(4.9) is analyzed for the effect of choosing different RDFs. As can be seen, the effective shear moduli

can be differ by a factor of two or more depending on the chosen RDF. In so doing, the RDF simulated by

the modified CRM provides the estimations of l�=lð0Þ that are very close to those obtained by the real RDF
at c ¼ 0:65. It is interesting that all RDF lead to infinite values of l�ðcÞ for large values of c, but the

simulated RDF provides a limiting upper value of c ¼ 0:72.

4.2. Some related methods used second order microstructure statistical information

It would be interesting to compare (at least a qualitative sense) the MEFM with some related methods of

prediction of effective moduli that account for higher-order microstructural information. So, in the elegant

method by Torquato (1997, 1998) the exact series expansions for the effective stiffness tensor were obtained
for macroscopically anisotropic, d-dimensional, two-phase composite media in powers of the ‘‘elastic po-

larization’’. The method departs from previous treatments by introducing an integral equation for the

‘‘cavity’’ strain field which coincides with our notations for the spherical inclusions with the effective field
�eeðxÞ ¼ A�1eðxÞ introduced by Eq. (4.5). At the next step the equation for the cavity strain field (or the

effective field) was recast in terms of the elastic polarization tensor g (4.3), where the driving term Rhei
(called the external stress polarization by Buryachenko, 2001a) was obtained as an extraction of the Es-

helby solution for a single inclusion in the infinite matrix subjected to the field hei. After that the analog of
Eq. (4.3) used by Torquato (1997) can be solved by the iteration method similarly to the perturbation
method or the method of correlation appropximation (see Beran and McCoy, 1970). In so doing the driving

term of Eq. (4.3), which is the external strain polarization factor Rhei, is chosen as an initial approximation.

The last choice is better than that in the classical method of correlation approximation with the initial

approximation hei. However, Torquato (1997) has proposed a much better choice, and extracted in Eq.

(4.2) as a driving term not only the Eshelby solution Rhei for a single inclusion but also the solution

corresponding to one of the Hashin and Shtrikman (1963) bounds for the composite material that makes it

possible to analyze any contrasting of the components. The final explicit representations for the effective

moduli L� depend on the N-point correlation functions SðiÞN ðyN Þ, and the interactions of different inclusions
is not directly taken into account. In essence, this prospective idea by Torquato (1997) of the extraction of

Hashin–Shtrikman�s solution as a driving term was developed by Buryachenko (2001b) in his combined

Fig. 12. Variation of the relative effective shear modulus l�=lð0Þ as a function of a concentration of the inclusions c estimated by Eqs.

(4.7)–(4.9) and (3.10) (-�-�-), by (4.7)–(4.9) with the RDF simulated by the modified CRM (solid curve), by (4.7)–(4.9) and (3.9) (dashed

curve), and by (4.7)–(4.9) with experimentally estimated RDF (").
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MEFM-perturbation method in which the scheme by Torquato (1997) of the iteration approximation of

the integral operator involved was directly accompanied by the solution for the binary interacting inclu-

sions explicitly depending on the RDF gðrÞ. Buryachenko (2001b) demonstrated the advantage of the

standard MEFM over the combined MEFM-perturbation method through the comparison with experi-
mental data for the Newtonian suspensions of identical spherical rigid inclusions. It should be mentioned

that to obtain concrete numerical estimations of L� by the use of exact formulae by Torquato (1997), it is

necessary to know a complete set of the functions SðiÞN ðyN Þ ðN !1Þ. The last is practically improbable

because, to the authors knowledge, the systematic estimations even of three-pont functions SðiÞ3 ðy3Þ for the
real microstructures were not conducted, although the necessary microstructural parameters were estimated

for the hexagonal array of cylinders by Eischen and Torquato (1993). Underestimating of effective elastic

properties of the hexagonal fiber packing with respect to the random one (see Fig. 12) is consistent with

the similar comparison of 3D random and regular sphere packing. But in the case of the limitation of the
microstructural knowledge just by two-point function SðiÞ2 ðy2Þ (or gðrÞ), the estimations by Torquato (1997)
degenerate to one of the Hashin–Shtrikman boundaries or MT estimations that is worse than the MEFM�s
evaluations (see Fig. 11 and Buryachenko, 2001a,b) using the same information for the function gðrÞ.

Another alternative version of the multiparticle method deserves more attention. It is the method

proposed by Ju and Chen (1994a,b) for a linear problem of estimation of the effective elastic moduli which

was extensively developed by themselves and their coauthors as applied to a wide class of non-linear

problems such as estimation of second moments of stresses as well as plasticity and damage phenomena (see

the last papers Lee and Simunovic, 2000; Ju and Lee, 2001; Ju and Sun, 2001; Ju and Zhang, 2001 where the
previous references can be found). However, the internal inconsistency of the mentioned source approach

of the estimation of both the effective elastic properties and the second moment of stresses was discussed in

detail by Buryachenko (2001a,b) (where the references on additional analyses can be found) and, because of

this, the correctness of including these approaches into the non-linear approaches of both plasticity and

damage phenomena is questionable.

It should be mentioned that insensitivity of the estimations of L� on the second-order functions (SðiÞ2 ðy2Þ
or gðrÞ) in the case of the quasi-crystalline approximation (4.10) takes place just for the local problem of the

estimation of L� with homogeneous external loading. In the case of the inhomogeneous loading
(heiðxÞ 6¼ const:), the overall constitutive equations are described by either the differential or integral ef-

fective operator explicitly depending on the functions either SðiÞ2 ðy2Þ or gðrÞ even in the case of the as-

sumption (4.10) (see for references and details Buryachenko and Pagano, in press). However, the

estimations obtained by the MEFM through directly taking the effect of binary interacting inclusion into

account are more sensitive to the function gðrÞ than ones obtained in the framework of the quasi-crystalline
approximation (4.10).

5. Concluding remarks

It should be mentioned that for computer-simulated configurations, the particle reorganization induced
by shaking is subjected only to geometrical constraints, whereas for real structures the packing is far more

complicated and controlled by elastic, hydrodynamic, and cohesive forces etc. Our simulation technique is

able to isolate the fundamental geometrical constraints from other physico-mechanical and chemical effects

and therefore the results provide a valuable benchmark for evaluating sophisticated packing schemes used

in the modeling of real composite materials. It was shown that a sufficiently intensive shaking process leads

to the stabilization of a statistical distribution of the simulated structure that is most homogeneous, highly-

mixed and protocol independent (in sense that the statistical parameters estimated do not depend on the

basic simulated algorithm such as HCM, CRM or other). The arguments justified the last statement are
plausible rather than rigorous and require additional investigations.
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It is known that taking only one point probability density (volume fraction) into account can provide

only a rough estimation of bounds of effective properties and statistical averages of stresses in the con-

stitutive equations of composite materials. More informative characteristics of the point set are obtained

using statistical second-order quantities (such as two-point probability density, second-order intensity
function, and NND) which examine the association of points relative to other points. A few contributions

have paid attention to the application of these statistical distributions for generation of concrete reali-

zations of the locations of a finite number of interacting inclusions with subsequent analyses (see e.g. Ghosh

et al., 1997; Pyrz and Bochenek, 1998). More rigorous estimations of the statistical average of stress fields in

the constituents and effective elastic moduli are based on the statistical averaging of random integral

equations involved for an infinite number of inclusions whose configurations are described by statistical

second-order functions (see for references Buryachenko, 2001a; Torquato, 2002). In particular, in the

current paper we demonstrated the strong dependence of effective moduli on the concrete form of RDF and
demonstrated strong differences between apparently similar distributions.

It should be mentioned, however, that estimation of effective elastic moduli is a linear problem with

respect to the stress field analyzed which makes the analysis less sensitive to the local stress distribution than

non-linear micromechanical problems such as elastoplastic deformation, fracture, and fatigue of composite

materials. In this respect, Buryachenko (2001a) estimated the second moment of stresses averaged over the

volume of the constituents by the RDF, for application in the analysis of a wide class of non-linear

problems. These estimations of the second moment of stresses averaged over the volume of components are

defined by both the random stress fluctuations in the components and the inhomogeneity of the stress fields
in the constituents that can not be separated in the framework of the method proposed. It should be

mentioned that the admission of the hypothesis (4.10) of necessity leads to the absence of stress fluctuations

inside the homogeneous ellipsoidal inclusions as opposed to the estimations by the MEFM. Moreover, just

a stress fluctuation inside the inclusions defines the stress fluctuations at the interface between the matrix

and inclusions that, in turn, plays a fundamental role in the process of interface localization phenomena,

such as plasticity (see for references Buryachenko et al., 2002) and failure (see e.g. Tandon et al., submitted

for publication).

There are a few models (see for references He and Ekere, 2001) based on the idea that at high inclusion
concentrations, the effective properties are dominated by the interaction forces between neighboring par-

ticles that are proportional to d�1 where d is the ratio of the mean gap between neighboring particles to

particle diameter. Obviously, the use of the average value d � hNndi=ð2aÞ instead of random distribution N nd

leads to the loss of statistical information concerning the microtopology of the composite and is conceptually

questionable because estimating the average of the output parameter (such as effective modulus) by the use

of the average of the random input parameter (such as nearest neighbor distance) is essentially a non-linear

problem. The approach by Pyrz (1994) based on the elastic solution for two interacting inclusions in an

infinite matrix with subsequent averaging by the NND is a distinct improvement because it is more sensitive
to the local configuration of inclusions. In so doing, the crude assumption by Pyrz (1994) that two inclusions

are subjected to the field hêeðxÞi;ji � hei (4.4) can be relaxed by the use of more accurate estimations by

Buryachenko (2001a,b) of the correlation function of the effective field hêeðxÞi;ji acting on two inclusions vi
and vj fixed in the composite material. However, more detailed realization of this scheme is beyond the scope
of the current study and will be considered in forthcoming publications by the authors.

For researchers the statistical description of statistically homogeneous structures is a fascinating subject

studied in many papers and books. In contrast, the analogous analyses for statistically inhomogeneous

media such as clustered and functionally graded materials are posing annoying problems. In such a case, the
ergodicity fails, and ensemble and volume averages do not coincide. The degenerate case of this material is a

random matrix composite bounded in some directions as well as the effective composites media for the

inclusions are located in a region bounded in some directions, although unrestrictedness of the domain of

inclusion locations does not preclude statistical inhomogeneity. For example, any laminated composite
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materials randomly reinforced by aligned fibers in each ply, are a statistically inhomogeneous (or func-

tionally graded) material (see Fig. 13). There are just a few theoretical papers which study structures with a

gradient or with clustered objects (Hahn et al., 1999; Quintanilla and Torquato, 1997). So, Quintanilla and

Torquato (1997) proposed statistical descriptions for particulate, statistically inhomogeneous two-phase

random media by the use of the theory of a general Poisson process (see Stoyan and Stoyan, 1994) and

estimated for some simulated fully penetrable (Poisson distribution) spheres the canonical n-point micro-
structure function, the nearest neighbor functions, and the linear-path function that, unlike the homo-

geneous case, will depend on their absolute positions. Usually one analyzes so-called ideal cluster materials
that contain either a finite or infinite, deterministic or random ellipsoidal domain called particle clouds

distributed in the composite matrix. In so doing the concentration of particles is a piecewise constant and a

homogeneous one within the areas of ellipsoidal clouds and composite matrix (see Leblond and Perrin, 1999;

Shan and Gokhale, 2002). The most used descriptor for the clustered and graded materials is a volume

concentration of inclusions (see e.g. also Reiter et al., 1997; Suresh and Mortensen, 1998; Dao et al., 1997)

which is not enough for the characterization of the micromorphology of fillers, simply because one can

present other morphology with the same descriptor. However, just taking into account binary interacting

inclusions effects directly dependent on the RDF allows Buryachenko (2001a) to detect some fundamentally
new non-local effects for graded materials. In light of this, the further development of a statistical quanti-

tative description for so many prospective clustered and graded materials is of profound importance in both

practically and theoretically sense and will be considered in forthcoming publications by the authors.
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